If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x=16=0
We move all terms to the left:
x^2+10x-(16)=0
a = 1; b = 10; c = -16;
Δ = b2-4ac
Δ = 102-4·1·(-16)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{41}}{2*1}=\frac{-10-2\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{41}}{2*1}=\frac{-10+2\sqrt{41}}{2} $
| 4n–5=11 | | 45.00(n+17.99)=422.99 | | √3x+40=0 | | -15x+9x=36 | | -7x=-53 | | 2(p−3)−6=4 | | 7x-5=-5x+2. | | 2.88(b+1)=8.64 | | 2x-32÷180=x÷100 | | 4(d+7)/d=2 | | x=(55-20)5 | | w+18=27w= | | −42−11y=-97 | | 13f-2=6f+5 | | 3+(2y)-(y+1)=6 | | 2(2q+7)=38 | | (3x-2)=14 | | y÷10=6 | | 2+1/3x=4 | | 0=x-23 | | (2n+7)(7n-6)=0 | | ─3x+14=─13 | | 10=15d-5 | | 4566.40-x=700 | | 18(5−3w)=74 | | (1/4)^2=x | | 3/5x+8=11 | | 2.6x+18=2.4x22 | | 7.)-9x=72 | | 12x+10=8x+6 | | -4x+4x-2=0 | | 0.18(5x−4)=0.5x+0.8 |